Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production

نویسندگان

  • Giorgio Perin
  • Alessandra Bellan
  • Anna Segalla
  • Andrea Meneghesso
  • Alessandro Alboresi
  • Tomas Morosinotto
چکیده

BACKGROUND The productivity of an algal culture depends on how efficiently it converts sunlight into biomass and lipids. Wild-type algae in their natural environment evolved to compete for light energy and maximize individual cell growth; however, in a photobioreactor, global productivity should be maximized. Improving light use efficiency is one of the primary aims of algae biotechnological research, and genetic engineering can play a major role in attaining this goal. RESULTS In this work, we generated a collection of Nannochloropsis gaditana mutant strains and screened them for alterations in the photosynthetic apparatus. The selected mutant strains exhibited diverse phenotypes, some of which are potentially beneficial under the specific artificial conditions of a photobioreactor. Particular attention was given to strains showing reduced cellular pigment contents, and further characterization revealed that some of the selected strains exhibited improved photosynthetic activity; in at least one case, this trait corresponded to improved biomass productivity in lab-scale cultures. CONCLUSIONS This work demonstrates that genetic modification of N. gaditana has the potential to generate strains with improved biomass productivity when cultivated under the artificial conditions of a photobioreactor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic insights from the oleaginous model alga Nannochloropsis gaditana

Nannochloropsis species have emerged as leading phototrophic microorganisms for the production of biofuels. Several isolates produce large quantities of triacylglycerols, grow rapidly, and can be cultivated at industrial scales. Recently, the mitochondrial, plastid and nuclear genomes of Nannochloropsis gaditana were sequenced. Genomic interrogation revealed several key features that likely fac...

متن کامل

Wavelength shift strategy to enhance lipid productivity of Nannochloropsis gaditana

Background Microalgae, being a phototroph, grow in the presence of light, and utilizing photons in narrow and specific range of wavelengths. There have been numerous attempts to take advantage of this trait of wavelength-dependent growth for the purpose of increasing biomass productivity. One potential option involves wavelength conversion of sunlight. In the present study, three fluorescent dy...

متن کامل

Comparison of the Growth Performance of Nannochloropsis oceanica IMET1 and Nannochloropsis gaditana CCMP526 under Various Culture Conditions

We studied the growth performance of Nannochloropsis oceanica IMET1 under various culture conditions, including different CO2 concentrations, temperature, or light intensities compared with that of N. gaditana CCMP526. When CO2 concentrations were changed, the growth rates of N. oceanica IMET1 and N. gaditana CCMP526 were the highest at a CO2 concentration of 2 vol%. N. oceanica IMET1 had a hig...

متن کامل

Ultrastructure and composition of the Nannochloropsis gaditana cell wall.

Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalci...

متن کامل

CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana

CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015